
Flash Freezing Flash Boys:
Countering Blockchain Front-Running

Haoqian Zhang, Louis-Henri Merino, Vero Estrada-Galiñanes, Bryan Ford
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
{haoqian.zhang, louis-henri.merino, vero.estrada, bryan.ford}@epfl.ch

Abstract—Front-running, the practice of benefiting from ad-
vanced knowledge of pending transactions, has proliferated in
the cryptocurrency space with the emergence of decentral-
ized finance. Front-running causes devastating losses to honest
participants—estimated at $280M each month—and endangers
the fairness of the ecosystem. We present Flash Freezing Flash
Boys (F3B), an architecture to address front-running attacks
by relying on a commit-and-reveal scheme where the con-
tents of a transaction are encrypted and later revealed by a
decentralized secret-management committee (SMC) when the
transaction has been committed by the underlying consensus
layer. To maintain legacy compatibility, we design F3B to be
agnostic to the underlying consensus algorithm and compatible
with existing smart contracts. A preliminary exploration of F3B
shows that with a secret-management committee consisting of 8
and 128 members, F3B presents between 0.1 and 2.2 seconds of
transaction-processing latency, respectively.

Index Terms—security & privacy, decentralized finance, front-
running

I. INTRODUCTION

Front-running is the practice of benefiting from advanced
knowledge of pending transactions by entering into a financial
position [1]–[3]. While benefiting the entities involved, this
practice puts others at a significant financial disadvantage,
leading regulators to judge this behavior as illegal (and un-
ethical) in traditional markets [1].

Once a significant problem for traditional (centralized)
markets resolved essentially via regulations, it has now be-
come a significant problem for decentralized finance, given
their pseudonymous nature and the difficulties involved with
pursuing entities across numerous jurisdictions [1], [4]. While
cryptocurrencies, such as Ethereum [5], support complex smart
contracts that enable decentralized finance, many of them do
not inherently provide protections for transactions given their
visibility in mempool—before they are committed, allowing
adversaries (e.g., miners) to practice front-running at will.
For example, adversaries can financially benefit from these
transactions by creating their own transactions and positioning
them in a specific sequence with respect to the targeted
transaction.

Front-running negatively impacts all honest DeFi actors, but
the automated market maker (AMM) is particularly vulnerable
because of price slippage [6]. An estimate shows that front-
running attacks amount to $280 million in losses for DeFi
actors each month [7]. In addition, front-running attacks

threaten the underlying consensus layer’s security by incen-
tivizing unnecessary forks [8], [9].

While front-running is clearly and openly being exploited
in the decentralized finance space, recall that regulations
are difficult to achieve in a decentralized system. Thereby,
the solution must be technological in nature and achieve
widespread support among the cryptocurrency community.
While achieving the latter is a challenge on its own, existing
technological solutions present various limitations as they
focus on specific applications [10], [11], rely on multiple
rounds with high latency overhead [11], [12], or are consensus-
specific [13], [14].

We present Flash Freezing Flash Boys1 (F3B), a front-
running protection architecture that exhibits low transaction-
processing latency overhead while remaining legacy compati-
ble (agnostic to the underlying consensus algorithm and to the
smart contract implementation). F3B addresses front-running
by adopting a commit-and-reveal architecture that encrypts
transactions that are revealed after being committed by the
consensus layer. By encrypting transactions, malicious parties
are now at a serious disadvantage since they no longer have
visibility of transactions while they rest in mempool.

To overcome a notable problem where the sender needs to
be online during the reveal phase, F3B builds on Calypso [15],
an architecture that enables on-chain secrets by introducing a
secret-management committee (SMC) that reveals those on-
chain secrets when designated. In our setup, the on-chain
secrets are the encrypted transactions and the designed rev-
elation period occurs when the transaction is committed by
the underlying consensus layer (e.g., Bitcoin needs 6 block
confirmations while a PBFT-style consensus only needs 1
block confirmation). Notably, consensus nodes now finalize—
verify and execute—a transaction after the secret-management
committee reveals the contents of a transaction. At this point,
it is too late for malicious actors to launch a front-running
attack. F3B is independent of the consensus algorithm or smart
contract implementation, but its deployment requires a fork of
the underlying blockchain.

Our proposed solution notably brings about a challenge
regarding the possible introduction of unsolicited transactions.
F3B thus mandates, for each transaction, the sender to pay a

1The name Flash Boys comes from a popular book that reveals this
aggressive market-exploiting strategy on Wall Street in 2014 [4].

storage fee to have their transaction committed, even though
the consensus nodes are unable to verify and execute the
transaction just yet.

We implemented a prototype of F3B in Go [16]. Our pre-
liminary findings show that the transaction-processing latency
overhead introduced is between 0.1 to 2.2 seconds for 8 to
128 trustees. To our knowledge, this is the first work to
systematically evaluate threshold encryption at the transaction
level and be capable of mitigating front-running attacks at this
level of scalability. As part of our evaluation, we model the
Ethereum blockchain with 13 seconds block time [17] and vary
the block confirmations m before a transaction is considered
committed or “irreversible”: the total time for committing a
transaction is then 13m seconds. Our analysis shows that for
a committee size of 128, our latency overhead is 0.78% with
20 block confirmations.

Our key contributions are:
1) F3B is the first systematic exploration of threshold

encryption at the transaction level to mitigate front-
running attacks.

2) An preliminary experimental analysis shows that F3B
has a small latency overhead with respect to Ethereum.

II. BACKGROUND

We now present the background required to introduce F3B.

A. Front-running Attacks and Transaction Commitment

Recall that front-running is an attack where an entity ben-
efits from advanced knowledge of pending transactions [1]–
[3]. A front-running attack at its core is an adversary who
has some advantage (e.g., network connectivity, miner) in the
ordering of the transactions before they are executed and thus
can place their transaction in a certain order that benefits them
financially with respect to other transactions. With the advent
of blockchain and expressive smart contracts, the attacks have
become more complex and automated [9], [18].

While blockchain pending transactions are public infor-
mation, and thus utilizing public information may not be
considered illegal, front-running can still endanger finality by
incentivizing forks and causing financial loss to its users [8],
[9]. Cryptocurrencies suffer three main types of front-running
attacks [1]: displacement: displacing a targeted transaction
with a new transaction, insertion: inserting a transaction before
the targeted transaction, and suppression: delaying a targeted
transaction indefinitely.

In numerous consensus algorithms such as proof-of-work,
transaction-commitment is probabilistic since miners can di-
verge off the main chain and create a longer chain that would
overwrite any blocks since the divergence. Therefore, even if a
transaction is inserted on the blockchain, an adversary can still
launch a front-running attack. Given its probabilistic behavior,
parties (e.g., exchanges) generally accept a transaction to
be committed—no longer pending—when the transaction has
been mined at a depth of m blocks, i.e., the transaction has m
block confirmations. While there is no universally set number

Secret-management committee

(1) Publish encrypted
transactions

Senders

(2) Release keys
after commitment

Consensus Group

Figure 1. Senders publish encrypted transactions to the consensus group. Once
the transactions are no longer pending, the secret-management committee
releases the keys.

for m, parties set this value based on the amount of risk they
are willing to tolerate [19], [20].

B. Threshold Encryption and Calypso

A (t, n)-threshold secret-sharing scheme enables a secret
to be shared among n parties (trustees) and requires at least
t parties to recover the secret; t − 1 parties reveal nothing
about the secret [21]. Distributed key generation (DKG) [22]
is a multi-party (t, n) key-generation process to collectively
generate a public-private key pair (sk, pk) without relying on
a single trusted dealer; each trustee i obtains a share ski of
the secret key sk, and collectively obtains a public key pk.
Any client can now use pk to encrypt a secret, and at least t
trustees must cooperate to retrieve this secret [23].

Calypso is a framework that enables on-chain secrets
by adopting threshold encryption governed by a secret-
management committee [15]. Calypso allows ciphertexts to be
stored on the blockchain and collectively decrypted by trustees
according to a predefined policy. F3B leverages Calypso to
mitigate front-running attacks and extends its functionality to
automatically release the transaction contents once committed.

III. SYSTEM OVERVIEW

In this section, we present F3B with two strawman proto-
cols to motivate F3B’s system goals and then illustrate our
proposed protocol and how it achieves those system goals.

A. Architecture Overview

F3B, shown in figure 1, mitigates front-running attacks
by working with a secret-management committee to man-
age the storage and release of on-chain secrets. Instead of
propagating their transactions in cleartext, the sender now
encrypts their transactions and stores the associated secret
key with the secret-management committee before propagating
it— no one can now read or understand the content of
pending transactions. Once the transaction is committed, the
secret-management committee releases the secret keys so that
consensus nodes of the underlying blockchain can verify and
execute transactions.

Notably, F3B encrypts the entire transaction, not just inputs,
as other information such as the smart contract address may

provide enough information to launch a front-running attack,
such as the Fomo3D attack [1] or a speculative attack [6].

B. Modeling the underlying blockchain as the baseline

We assume that the underlying blockchain has a consensus
protocol that commits transactions as part of blocks. We
model the underlying blockchain as our baseline protocol for
comparison. W.l.o.g., we model the underlying blockchain’s
block time as Lb seconds, e.g., on average, Ethereum has a
block time of 13 seconds [17]. We consider a transaction
to be committed once its block has a sufficient number of
confirmations for proof-of-work and proof-of-stake consensus
algorithms. In reality, exchanges require multiple block confir-
mations before the funds are credited to users’ accounts, e.g.,
Kraken and Coinbase require 20 and 35 block confirmations,
respectively, for Ethereum transactions [19], [20]; we define
a transaction as committed after m block confirmations. For
PBFT-style consensus, the required m is 1. Thereby, in our
baseline, the transaction latency2 is mLb. Further, we assume
that the underlying blockchain has a throughput of Tb tps.

C. Strawman Protocols

In order to explore the challenges inherent in building a
framework like F3B, we first examine a couple of promising
but inadequate strawman approaches.

1) (Strawman I) Commit-and-Reveal by User: The first
strawman divides a transaction into two steps: commit and
reveal. First, Alice creates her transaction, and instead of
propagating the transaction, she commits to her transaction by
propagating her transaction hash to the consensus group. Once
the consensus group commits the hash into the underlying
blockchain, Alice propagates her transaction, revealing its
contents (execution parameters such as inputs and any smart
contract interactions). Consensus nodes finally execute the
transaction with respect to its hash order committed on the
blockchain, assuming the transaction contents matches the
transaction hash provided earlier by Alice.

This simple strawman mitigates front-running attacks since
the consensus group committed the execution order before
Alice revealed her transaction, but it comes with some sig-
nificant disadvantages: a) Alice must continuously monitor
the blockchain to find out when to reveal her transaction,
and b) Alice may not be able to reveal her transaction due
to a cryptokitties storm or blockchain DoS attacks, and c)
this approach is subject to output bias as consensus nodes
may deliberately choose not to include certain transactions
into the blockchain [6], and d) this approach brings high
latency overhead than the baseline protocol, as Alice needs
to propagate two times.

2) (Strawman II) The Trusted Custodian: A straightforward
method to remove Alice from the equation after committing
to a transaction is by employing a trusted custodian. Instead
of releasing a transaction hash, Alice encrypts her entire

2For simplicity, we leave out the time for blockchain nodes to verify and
execute transactions, and assume that a transaction propagates the network
within one block time as to not contribute to transaction-processing latency.

transaction with a symmetric key and shares this symmetric
key with a trusted custodian. After the encrypted transaction
is committed, the trusted custodian releases the key to the
consensus group, which decrypts and executes the transaction.

This strawman also mitigates front-running attacks, as the
nodes cannot read the content of transactions before ordering,
with similar latency and throughput to the baseline protocol.
However, it introduces a centralized and opaque component:
the trusted custodian who may secretly act maliciously, such
as colluding with front-running actors for their own profit.
In addition, the trusted custodian represents a single point
of failure where consensus nodes cannot decrypt and execute
a transaction if the custodian crashes. To mitigate those two
risks, we need decentralization to mitigate the single point of
failure and make collusion significantly more difficult.

D. System Goals

1) Front-running protection: Preventing entities from
launching front-running attacks.

2) Decentralization: No single point of failure or compro-
mise.

3) Confidentiality: Transactions are only revealed after it
is committed by the underlying consensus layer.

4) Compatibility: The system is agnostic to the underlying
consensus algorithm and smart contract implementation.

5) Low latency overhead: The system presents a low
latency transaction-processing overhead.

E. System and Network Model

F3B’s architecture consists of three components: senders
that publish (encrypted) transactions, the secret-management
committee that manages and releases secrets, and the consen-
sus group that maintains the underlying blockchain. While
F3B supports various consensus algorithms, such as proof-
of-work like Ethereum and PBFT-style consensus algorithms
like ByzCoin [24], F3B does require a forked instance of
the underlying blockchain to allow the consensus group to
commit encrypted transactions and to finalize transactions after
obtaining the keys. In a permissioned blockchain, the secret-
management committee and the consensus nodes can consist
of the same set of servers. For clarity, however, we discuss
them as separate entities. In addition, we use the name “Alice”
to represent a generic sender.

For the underlying network, we assume that all honest
blockchain nodes and trustees of the secret-management com-
mittee are well connected, and their communication channels
are synchronous, i.e., if an honest node or trustee broadcasts
a message, all honest nodes and trustees receive the message
within a known maximum time delay [25].

F. Threat Model

We assume that the adversary is computationally bounded,
that cryptographic primitives we use are secure, and that
the Diffie-Hellman problem is hard. We further assume that
all messages are signed and that consensus nodes and the

Sender Secret-management
committee

Consensus Group

Write Transaction (ctx , ck)

StoreACK / NACK

Blockchain Height

Blockchain HeightWait

Shares of k

Execute
txACK / NACK

(1)

(2)

(3)

Figure 2. F3B per-transaction protocol steps: (1) Sending an encrypted
transaction to the underlying blockchain, (2) Waiting for the transaction
commitment, (3) Releasing the key and executing the transaction

secret-management committee only process correctly signed
messages.

The secret-management committee has n trustees of which
f can fail or behave maliciously. We require n ≥ 2f + 1 and
set the secret-recovery threshold to t = f +1. We assume that
the underlying blockchain is secure: e.g., at most c of 3c+ 1
consensus nodes fail or misbehave in a PBFT-style blockchain,
or the adversary controls less than 50% computational power
in a proof-of-work blockchain like Bitcoin or Ethereum.

G. Protocol and Overhead Analysis

In the beginning, the secret-management committee runs
a DKG protocol to generate a private key share skismc for
each member and a public key pksmc. The secret-management
committee only needs to run DKG once per reconfiguration;
thus, it does not contribute to the transaction latency. We use
the TDH2 cryptosystem as the threshold encryption scheme
that provides protection to chosen ciphertext attacks and
provides NIZK proofs to validate the secret shares [23]. We
unpack the per-transaction protocol (see figure 2) as follows:

1) Alice, as the sender, first chooses a symmetric key k
and encrypts it with pksmc obtaining the ciphertext ck.
Next, Alice encrypts transaction ctx = enck(tx), and
sends (ctx, ck) to the consensus group, which writes the
pair into the blockchain.

2) The secret-management committee waits for (ctx, ck)
to be committed on the blockchain (after m block
confirmations).

3) Each secret-management committee trustee reads ck
from the underlying blockchain and releases their de-
crypted share of k along with a NIZK proof of correct-
ness for the decryption process. Consensus nodes verify
the decrypted shares and use them to reconstruct k using
Lagrange interpolation of shares when there are at least
t valid shares. The consensus group then acquires the
original tx = deck(ctx) and verifies and executes tx.
We denote the time for this step as Lr.

Steps 1 and 2 commit a transaction on the underlying
blockchain and wait until its committed, which takes mLb

time based on the baseline model (§III-B). Compared with
the baseline, step 3 is an additional step, and we denote this
overhead to be Lr. As we are relying on another component,
the secret-management committee, it may become a bottleneck
with respect to the system throughput, and thus the throughput
is min(Tb, Tsmc), assuming the secret-management commit-
tee’s throughput is Tsmc.

H. Achieving System Goals

Front-running protection: Preventing entities from launch-
ing front-running attacks.

We reason the protection offered by F3B from the definition
of front-running: if an adversary cannot benefit from pending
transactions, he cannot launch front-running attacks. In F3B,
no entity except the sender knows the content of pending
transactions and is financially incentivized not to release its
contents. The key is released only when a transaction is com-
mitted; thus, by definition, the attacker loses their advantage
to launch a front-running attack. However, we acknowledge
that attackers may use metadata of the encrypted transaction
to launch speculative front-running attacks, as discussed in
§VI.

Decentralization: No single point of failure or compromise.
The secret-management committee can handle up to t − 1

malicious trustees and up to n− t offline trustees.
Confidentiality: Transactions are only revealed after it is

committed by the underlying consensus layer.
Each transaction is encrypted with a symmetric key gen-

erated by the sender, and the symmetric key is encrypted
with the secret-management committee’s public key. Per our
threat model, only f trustees may behave maliciously, ensuring
that even with collusion, these f trustees cannot obtain the
symmetric key. When f + 1 nodes follow the protocol by
waiting for transaction commitment, the secret-management
committee can reconstruct and release the key so that the
consensus group can decrypt the transaction.

Compatibility: The system is agnostic to the underlying
consensus algorithm and smart contract implementation.

Since we are encrypting the entire transaction and require
a fork at the consensus layer to adapt to F3B’s protocol,
F3B does not require modifications to existing smart contract
implementations nor to the consensus algorithm.

Low latency overhead: The system presents a low latency
transaction-processing overhead.

We refer to section IV for a full discussion and evaluation
of the latency overhead.

I. Incentives and Abuse Protection

Given that transactions are encrypted, consensus nodes
cannot verify or execute transactions, opening up an avail-
ability attack that would otherwise not exist in an open
system. A malicious adversary could spam the blockchain
with inexecutable transactions (e.g., not enough execution
costs, malformed transactions), thus significantly hindering the
throughput for honest transactions. To prevent this attack, we
introduce a storage fee alongside the traditional execution fee

8 16 32 64 128
Size of Secret-management Committee

0.01

0.1

1

10

100

1000

Ti
m

e(
se

c)

DKG Setup
Send Transaction
Key Reconstruction

Figure 3. Overhead of F3B for varying sizes of the secret-management
committee.

(e.g., Ethereum gas) that makes it costly for an attacker to
operate this attack. The storage fee paid to miners covers the
placement of the transaction on the blockchain and can vary
based on the size of the transaction. The secret-management
committee nodes will also need an incentive to operate. One
option is requiring each consensus node to have the ability to
run a secret-management committee node. The execution fee
is not calculated until after the transaction is revealed by the
secret-management committee, given the lack of knowledge
of the transaction’s contents.

J. Reconfiguration of secret-management committee

The membership of the secret-management committee
needs to be reconfigured at some predefined interval (each
epoch) to allow for new trustees or the removal of others and to
prevent silent violation of our threat model over a long period
of time. In a new epoch, the old secret-management committee
continues to operate until all transactions encrypted with their
public key are revealed while new transactions are encrypted
with the new secret-management committee’s public key.

IV. EVALUATION

We implemented a prototype of F3B in Go [16], built
on Calypso [15] and supported by Kyber [26], an advanced
cryptographic library. We use ByzCoin [24], a PBFT-style con-
sensus protocol as our underlying blockchain. We instantiate
our cryptographic primitives using Edward25519 elliptic curve
with 128-bit security.

Our preliminary evaluation focuses on latency. We ran our
experiment on a single server with 32GB of memory and 20
CPU cores running at 2.1GHz. In figure 3, while varying the
number of secret-management committee trustees, we present
the total time a) for setting up a DKG, b) for sending a
transaction to the Byzcoin blockchain (Step 1), and c) for
reconstructing the key (Step 3). Recall that DKG setup is a
one-time operation per epoch that can be bootstrapped during
the previous epoch; thus, b) and c) represent the true latency
of our solution.

Table I
LATENCY OVERHEAD FOR ETHEREUM BLOCKCHAIN

Latency Overhead for different sizes of SMC

Confirmations 8 16 32 64 128

5 0.09% 0.17% 0.31% 1.04% 3.10%
10 0.05% 0.08% 0.16% 0.52% 1.55%
20 0.02% 0.04% 0.08% 0.26% 0.78%
30 0.02% 0.03% 0.05% 0.17% 0.52%
50 0.01% 0.02% 0.03% 0.10% 0.31%

We consider the transaction’s overall latency in F3B to
be expressed as mLb + Lr ($III-G). To evaluate F3B with
Ethereum’s consensus model, we adopt 13 seconds as the
expected block time [17]. Since there is no standard number
of confirmations before a block is considered committed, we
vary both the number of confirmations and the size of the
secret-management committee summarized in Table I. Our
result shows that for a committee size of 128 with 20 block
confirmations, F3B brings a 0.78% latency overhead.

V. RELATED WORK

Front-running attacks on the blockchain were first sys-
tematized by Eskandari et al. [1] and quantified by Daian
et al. [9]. Previous works [13], [27] explore the idea of
applying threshold encryption at the transaction level to mit-
igate front-running attacks. Schmid [13] proposed the secure
causal atomic broadcast protocol with threshold encryption to
prevent front-running attacks but did not provide a solution
for integrating with proof-of-work blockchain. CodeChain [27]
proposed to reveal transactions by their trustees using the
Shamir secret sharing scheme. To our knowledge, our work
is the first solution of this kind with compatibility to the
consensus algorithm and smart contract implementation while
achieving low latency overhead.

Other research adopts different approaches to mitigate front-
running. A series of recent studies focus on fair ordering [28]–
[30], but it alone can not prevent a rushing adversary [6].
Wendy explores the possibility of combining fair ordering with
commit and reveal [30] but does not present quantitative over-
head analysis. Some research adopts time-lock puzzles [31] to
blind transactions. Injective protocol [32] deploys a verifiable
delay function [33] as proof-of-elapsed-time to prevent front-
running attacks. However, it is still an open challenge to
link the time-lock puzzle parameters to the actual real-world
delay [6].

VI. LIMITATIONS & FUTURE EXTENSIONS

This section introduces future extensions of F3B.
a) Metadata Leakage: In our architecture, adversaries

can only observe encrypted transactions until they are com-
mitted, thus preventing the revelation of transaction inputs
to launch front-running attacks. Nevertheless, adversaries can
still utilize side channels such as transaction metadata to
launch speculative attacks. Specifically, since the sender needs
to pay the storage fee (§III-I) for publishing an encrypted

transaction to the underlying blockchain, this leaks the sender’s
address. Knowledge of the sender’s address can be help-
ful in launching a front-running attack since an adversary
may be able to predict the sender’s behavior based on his-
torical transactions. In order to prevent this second-order
front-running attack, an underlying blockchain needs to offer
anonymous payment to users, such as Zerocash [34] or a
mixing service [35]. Another side-channel leakage is the size
of the encrypted transaction or the time the transaction is
propagated; a possible remedy for mitigating metadata leakage
is PURBs [36].

b) Scaling secret-management committee: The secret-
management committee may become the bottleneck of the
underlying consensus protocol due to its inability to achieve
the same throughput. Nevertheless, a secret-management
committee can operate independently from another secret-
management committee. We thus suggest adopting a sharding
strategy by running numerous secret-management committees
in parallel and load balancing pending transactions between
them. In addition, it may be possible to reconstruct a secret
on a per-block basis rather than on a per-transaction basis
using identity-based encryption [37], thus helping increase
throughput even further.

VII. CONCLUSION

This paper introduces F3B, an architecture that addresses
front-running attacks by encrypting pending transactions with
threshold encryption. We performed a preliminary exploration
demonstrating that F3B can protect the Ethereum blockchain
with a low latency overhead.

REFERENCES

[1] S. Eskandari, S. Moosavi, and J. Clark, “Sok: Transparent dishonesty:
front-running attacks on blockchain,” in International Conference on
Financial Cryptography and Data Security. Springer, 2019, pp. 170–
189.

[2] D. Bernhardt and B. Taub, “Front-running dynamics,” Journal of Eco-
nomic Theory, vol. 138, no. 1, pp. 288–296, 2008.

[3] “Nasdaq: Front running,” https://www.nasdaq.com/glossary/f/front-
running, 2018(?), accessed: 2022-04-17.

[4] M. Lewis, Flash boys: a Wall Street revolt. WW Norton & Company,
2014.

[5] C. Dannen, Introducing Ethereum and solidity. Springer, 2017, vol. 1.
[6] C. Baum, J. H.-y. Chiang, B. David, T. K. Frederiksen, and L. Gentile,

“Sok: Mitigation of front-running in decentralized finance,” Cryptology
ePrint Archive, 2021.

[7] E. Mikalauskas. (2021) 280 million stolen per month
from crypto transactions. Accessed: 2022-02-16. [Online].
Available: https://cybernews.com/crypto/flash-boys-2-0-front-runners-
draining-280-million-per-month-from-crypto-transactions

[8] dapp.org, “Uniswap v2 audit report,” 2020, accessed: 2022-01-22.
[Online]. Available: https://dapp.org.uk/reports/uniswapv2.html

[9] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint
arXiv:1904.05234, 2019.

[10] M. Ciampi, M. Ishaq, M. Magdon-Ismail, R. Ostrovsky, and V. Zikas,
“Fairmm: A fast and frontrunning-resistant crypto market-maker,” Cryp-
tology ePrint Archive, 2021.

[11] H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and
A. Narayanan, “An empirical study of namecoin and lessons for de-
centralized namespace design.” in WEIS. Citeseer, 2015.

[12] LibSubmarine, “Defeat front-running on ethereum,” 2017(?), accessed:
2022-01-24. [Online]. Available: https://libsubmarine.org

[13] N. Schmid. (2021) Secure causal atomic broadcast. [Online]. Available:
https://crypto.unibe.ch/archive/theses/2021.bsc.noah.schmid.pdf

[14] C. Stathakopoulou, S. Rüsch, M. Brandenburger, and M. Vukolić,
“Adding fairness to order: Preventing front-running attacks in bft pro-
tocols using tees,” in 2021 40th International Symposium on Reliable
Distributed Systems (SRDS). IEEE, 2021, pp. 34–45.

[15] E. Kokoris-Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta, and
B. Ford, “Calypso: Private data management for decentralized ledgers,”
Cryptology ePrint Archive, 2018.

[16] Go, “The go programming language,” 2009. [Online]. Available:
https://go.dev

[17] “Blocks,” 2022, accessed: 2022-02-24. [Online]. Available:
https://ethereum.org/en/developers/docs/blocks

[18] G. K. Dan Robinson, “Ethereum is a dark forest,” 2020. [Online].
Available: https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest

[19] Coinbase, “Coinbase confirmations,” 2022(?), accessed: 2022-03-
03. [Online]. Available: https://help.coinbase.com/en/coinbase/getting-
started/crypto-education/glossary/confirmations

[20] Kraken, “Cryptocurrency deposit processing times,” 2022(?), accessed:
2022-03-03. [Online]. Available: https://support.kraken.com/hc/en-
us/articles/203325283-

[21] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[22] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 1999, pp. 295–310.

[23] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” in International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 1998, pp.
1–16.

[24] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency via
collective signing,” in 25th usenix security symposium (usenix security
16), 2016, pp. 279–296.

[25] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2017,
pp. 643–673.

[26] “https://github.com/dedis/kyberThe Kyber Cryptography Library,” 2010
– 2022.

[27] S. Najafi. (2020) Front-running attacks on blockchain. [On-
line]. Available: https://medium.com/codechain/front-running-attacks-
on-blockchain-1f5ba28cd42b

[28] M. Kelkar, S. Deb, and S. Kannan, “Order-fair consensus in the
permissionless setting,” Cryptology ePrint Archive, 2021.

[29] K. Kursawe, “Wendy, the good little fairness widget: Achieving order
fairness for blockchains,” in Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, 2020, pp. 25–36.

[30] K. Klaus, “Wendy grows up: More order fairness,” in International
Conference on Financial Cryptography and Data Security. Springer,
2021, pp. 191–196.

[31] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” 1996.

[32] E. Chen and A. Chon, “Injective protocol: A collision resistant decen-
tralized exchange protocol,” 2018.

[33] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in Annual international cryptology conference. Springer,
2018, pp. 757–788.

[34] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE symposium on security and privacy. IEEE, 2014, pp.
459–474.

[35] J. H. Ziegeldorf, R. Matzutt, M. Henze, F. Grossmann, and K. Wehrle,
“Secure and anonymous decentralized bitcoin mixing,” Future Genera-
tion Computer Systems, vol. 80, pp. 448–466, 2018.

[36] K. Nikitin, L. Barman, W. Lueks, M. Underwood, J.-P. Hubaux, and
B. Ford, “Reducing metadata leakage from encrypted files and commu-
nication with purbs,” Proceedings on Privacy Enhancing Technologies,
vol. 2019, no. 4, pp. 6–33, 2019.

[37] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Annual international cryptology conference. Springer, 2001,
pp. 213–229.

