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Abstract
Front-running attacks, which benefit from advanced knowledge of pending transactions, have
proliferated in the blockchain space since the emergence of decentralized finance. Front-running
causes devastating losses to honest participants and continues to endanger the fairness of the
ecosystem. We present Flash Freezing Flash Boys (F3B), a blockchain architecture that addresses
front-running attacks by using threshold cryptography. In F3B, a user generates a symmetric key to
encrypt their transaction, and once the underlying consensus layer has finalized the transaction, a
decentralized secret-management committee reveals this key. F3B mitigates front-running attacks
because, before the consensus group finalizes it, an adversary can no longer read the content of a
transaction, thus preventing the adversary from benefiting from advanced knowledge of pending
transactions. Unlike other mitigation systems, F3B properly ensures that all unfinalized transactions,
even with significant delays, remain private by adopting per-transaction protection. Furthermore,
F3B addresses front-running at the execution layer; thus, our solution is agnostic to the underlying
consensus algorithm and compatible with existing smart contracts. We evaluated F3B on Ethereum
with a modified execution layer and found only a negligible (0.026%) increase in transaction latency,
specifically due to running threshold decryption with a 128-member secret-management committee
after a transaction is finalized; this indicates that F3B is both practical and low-cost.
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Figure 1 F3B architecture. Senders publish encrypted transactions to the consensus group. The
secret-management committee releases the decryption shares once the transactions are no longer
pending. Finally, the consensus group reconstruct the key and decrypt and execute the transaction.
The secret-management committee and the consensus group can consist of the same set of servers.
For clarity in this paper, we logically separate them into two different entities.

1 Introduction

Front-running is the practice of benefiting from the advanced knowledge of pending transac-
tions [20, 7, 1]. Although benefiting some entities involved, this practice puts others at a
significant financial disadvantage, making this behavior illegal in traditional markets with
established securities regulations [20].

However, the open and pseudonymous nature of blockchain transactions and the difficulties
of pursuing miscreants across numerous jurisdictions have made front-running attractive,
particularly in decentralized finance (DeFi) [38, 20, 15]. Front-running actors in the blockchain
space can read the contents of pending transactions and benefit from them by, e.g., creating
their own transactions and positioning them according to the target transaction [4, 15, 20].

Front-running negatively impacts honest DeFi actors and endangers the fairness of this
multi-billion market [18]. One estimate suggests that front-running attacks amount to $280
million in losses for DeFi actors each month [42]. Front-running also threatens the underlying
consensus layer’s security by incentivizing unnecessary forks [17, 15].

Despite work addressing front-running, several unmet challenges exist, such as high
latency, being restricted to a specific environment, or raising security concerns. Namecoin,
an early example of mitigating front-running attacks by having users send a commit and
later a reveal transaction, requires two rounds of communication with the underlying block-
chain [29]. Submarine further improves Namecoin’s design by hiding the addresses of smart
contracts involved, but it induces three rounds of communication to the underlying block-
chain [39, 29]. Both approaches induce high latency. Other works have taken a different
approach to mitigate front-running attacks by tailoring their solution to a specific application
or consensus algorithm [13, 52, 60, 5, 2, 3, 40, 25].

A promising approach is to use threshold encryption, where clients encrypt their trans-
actions to prevent malicious actors from understanding those transactions, as presented in
Fairblock [43] and Shutter [57, 58]. However, these schemes require clients to choose a future
block to derive the encryption key, which raises security concerns. Suppose a transaction
failed to be finalized in the client-chosen block due to, for example, a crypto mania that
overwhelms the blockchain network [31] or a deliberate denial of service attack [20]. In this
case, the transaction is undesirably revealed (see Section 3.3 for details).
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We present Flash Freezing Flash Boys1 (F3B), a novel blockchain architecture with front-
running protection that has a low latency overhead and is compatible with existing consensus
algorithms and smart contract implementations. Like Fairblock [43] and Shutter [57, 58],
F3B addresses front-running by adopting threshold encryption, but it accomplishes this on a
per-transaction basis rather than a per-block basis. Rather than selecting an encryption
key linked to a future block, clients generate an encryption key for each transaction. This
ensures that a transaction remains confidential until the block containing the transaction
has received enough confirmations.

As described in Figure 1, F3B’s architecture consists of the following steps: (a) A
client encrypts their transaction to a secret-management committee (SMC) and sends their
encrypted transaction to the consensus group that operates the underlying blockchain. (b)
The SMC reads the encrypted transaction from the underlying blockchain. (c) The SMC
prepares the decryption shares for the consensus group. (d) The SMC releases the decryption
shares to the consensus group once the underlying blockchain has finalized the transaction.
(e) The consensus group reconstructs the key. (f) The consensus group decrypts and executes
the transaction. Once the SMC begins to release the decryption shares, malicious actors
cannot launch a front-running attack because the transaction is already irreversibly ordered
on the blockchain. Although adversaries may attempt to run speculative front-running
attacks, where they guess the contents of a transaction on metadata information like the
sender’s address, these attacks are more likely to fail and can prove to be unprofitable [4].
Nonetheless, we discuss mitigation solutions for these attacks in Section 10.4.

F3B addresses two key practical challenges: (a) mitigating spamming of inexecutable
encrypted transactions onto the underlying blockchain, and (b) limiting latency overhead.
To mitigate spamming, we introduce a deposit-refund storage fee for storing encrypted
transactions, along with the standard execution fee (e.g., gas in Ethereum). To limit the
latency overhead, users write only data onto the underlying blockchain once to achieve
front-running protection.

We propose two cryptographic threshold schemes that can plug into F3B: TDH2[56] and
PVSS [53]. TDH2 enables clients to encrypt their transactions under the same public key
of a secret-management committee which is only changeable by time-consuming DKG or
resharing protocols. On the other hand, PVSS empowers clients to adopt a different secret-
management committee for each transaction but at the cost of the additional preprocessing
time for preparing the shares for each transaction.

We implemented a prototype of F3B with post-Merge2 Ethereum [23] as the underlying
blockchain and Dela [19] as the secret-management committee. We measure the latency
overhead by comparing the time it takes to decrypt and execute a transaction with the
time it takes just to execute the transaction. Our analysis shows that, with a committee
size of 128, the latency overhead is 0.026% and 0.027% for Ethereum under the TDH2 and
PVSS respectively; In comparison, Submarine, which also offers per-transaction protection
and hides the address of smart contracts as F3B, exhibits a 200% latency overhead, as it
requires three rounds of communication with the underlying blockchain [39, 11]. For part of
our prototype, we modified Ethereum’s execution layer by adding a new transaction type
featuring encryption and delayed execution. By only modifying the execution layer, we

1 The name Flash Boys comes from a popular book revealing this aggressive market-exploiting strategy
on Wall Street in 2014 [38].

2 The Merge refers to the merge executed on September 15th, 2022, to complete Ethereum’s transition to
proof-of-stake consensus.
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can (a) provide compatibility with various consensus algorithms embedded in Ethereum’s
consensus layer, including Proof-of-Work (PoW), Proof-of-Authority (PoA) and the recently
added, Proof-of-Stake (PoS) and (b) protect existing smart contracts without requiring any
code modifications.

In this paper, our key contributions are as follows:
1. The design of a blockchain architecture with front-running protection that uses threshold

encryption on a per-transaction basis, enabling confidentiality for all pending transactions,
even if transactions are delayed, while achieving low overhead.

2. The design of two protocols based on TDH2 and PVSS for F3B satisfies various demands
and user scenarios.

3. A prototype that, on Ethereum’s execution layer, demonstrates F3B’s ability to be agnostic
to (a) the underlying consensus algorithm and (b) to smart contract implementations
while achieving low-latency overhead.

4. A systematic evaluation of F3B on post-Merge Ethereum by looking at transaction latency,
throughput, and reconfiguration costs.

2 Background

In this section, we present a brief background on blockchain and smart contracts, and we
introduce front-running attacks and mitigation strategies.

2.1 Blockchain & Transaction Ordering
A blockchain is an immutable append-only ledger of ordered transactions [44]. However,
transactions go through a series of stages before they are finalized – irreversibly ordered – on
the blockchain. After a sender creates a transaction, they need to propagate the transaction
among the consensus nodes that then place the transaction in a pool of pending transactions,
most commonly known as mempool. Notably, these transactions are not yet irreversibly
ordered, thus opening up the possibility for front-running attacks. Furthermore, under certain
probabilistic consensus algorithms, such as PoW or PoS, a transaction inserted onto the
blockchain can still be reordered by inducing a fork of the underlying blockchain. Hence, to
guarantee irreversible ordering for probabilistic consensus algorithms, a transaction must
receive enough block confirmations – the number of blocks succeeding the block containing
the transaction [44, 34, 14].

2.2 Smart Contract & Decentralized Exchange
A smart contract is an executable computer program modeled after a contract or an agreement
that executes automatically [50]. A natural fit for smart contracts is on top of decentralized
fault-tolerant consensus algorithms, such as PBFT-style algorithms, PoW, and PoS, to ensure
their execution and integrity [63, 44, 32].

Although Bitcoin uses a form of smart contracts [44], it was not until Ethereum’s
introduction that the blockchain space realized Turing-complete smart contracts, the backbone
necessary for creating complex decentralized exchanges. To interact with these complex
smart contracts, users need to pay gas, a pseudo-currency that represents the execution cost
by miners [21]. However, the expressiveness of smart contracts comes with significant risks,
from inadvertent vulnerabilities to front-running. Front-running is exhibited by the lack of
guarantees that the underlying blockchain provides regarding ordering.
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2.3 Front-Running Attacks & Mitigation
The practice of front-running involves benefiting from advanced knowledge of pending
transactions [20, 7, 1]. In itself, knowledge of pending transactions is harmless, but the ability
to act on this information is where the true problem lies. In the context of blockchains, an
adversary performs a front-running attack by influencing the order of transactions, provided
that transactions in the mempool are entirely in the clear.

Cryptocurrencies suffer from mainly three types of front-running attacks [20]: displace-
ment, insertion, and suppression. Displacement is the replacement of a target transaction
with a new transaction formulated by the front-running attacker. Insertion is the malicious
introduction of a new transaction before a target transaction in the finalized transaction
ordering. Suppression is the long-term or indefinite delaying of a target transaction.

In an ideal world, front-running protection would consist of an immediate global ordering
of each transaction, as clients broadcast their transactions to prevent attackers from changing
their order. In reality, even if all participants were honest, such global ordering is practically
impossible due to clock synchronization [16] and consistency problems (e.g., two transactions
having the same time). Malicious participants can still carry out front-running attacks,
because timings can easily be manipulated.

A more practical solution involves encrypting transactions, thereby preventing the con-
sensus group from knowing the contents of the transactions when ordering them. This
solution mitigates front-running attacks as an attacker is hindered from taking advantage of
pending encrypted transactions.

3 Strawman Protocols

In order to explore the challenges inherent in building a framework, such as F3B, we first
examine a couple of promising but inadequate strawman approaches, representative of
state-of-the-art proposals [39, 11, 43, 57] but simplified for expository purposes.

3.1 Strawman I: Sender Commit-and-Reveal
The first strawman design has the sender create two transactions: a commit and a reveal
transaction. The commit transaction is simply a commitment (e.g., hash) of the intended
reveal transaction, which is simply the typical contents of a transaction that is normally
vulnerable to front-running. The sender will propagate the commit transaction and then
wait until its finality by the consensus group, before releasing the reveal transaction. Once
the reveal transaction is propagated, the consensus group proceeds to verify and to execute
the transaction, in the execution order that the commit transaction was finalized on the
blockchain. Given the finality in the former transaction, the sender is unable to change the
contents of the reveal transaction.

This simple strawman protocol mitigates front-running attacks because the commit
transaction determines the execution order and the contents of the commit transaction do not
expose the contents of the reveal transaction. However, this strawman protocol presents some
notable challenges: (a) the sender must remain online to continuously monitor the blockchain
to know when to release their reveal transaction, (b) the reveal transaction might be delayed
due to a congestion event like the cryptokitties mania [31] or a deliberate denial-of-service
(DoS) attack like the Fomo3D incident [20], (c) this approach is subject to output bias, as
the consensus nodes or the sender can deliberately choose not to reveal certain transactions
during the reveal phase [4], such as only revealing profitable ones and aborting others, and
(d) this approach has a significant latency overhead of over 100%, given that the sender must
now send two non-overlapping transactions instead of the one standard transaction.

AFT 2023
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3.2 Strawman II: The Trusted Custodian
A straightforward method for removing the sender from the equation, after sending the
commit transaction, is to employ a trusted custodian. After the consensus group finalizes the
transaction onto the underlying blockchain, the trusted custodian reveals the transaction’s
contents.

This strawman protocol mitigates front-running attacks, as the nodes cannot read, before
ordering, the contents of the transaction. However, the trusted custodian presents a single
point of failure: Consensus nodes cannot decrypt and execute a transaction if the custodian
crashes. Instead, by employing a decentralized custodian, we can mitigate the single point of
failure issues.

3.3 Strawman III: Threshold Encryption with Block Key
The next natural step is to have a decentralized committee that generates a public key
for each block, thus enabling a user to encrypt their transaction for a future block. The
committee would then release the private key after the block finality. Furthermore, the
committee can use identity-based encryption [55] to enable users to derive a future block key
based on the block’s height.

This strawman protocol seems to mitigate front-running, as the transactions in a block are
encrypted until they are finalized in their intended block. However, if an encrypted transaction
fails to be included in the specified block, its contents will be revealed shortly thereafter
while remaining unfinalized, thus making it vulnerable to front-running. Blockchain networks
have repeatedly observed such failures due to congestion, such as cryptokitties manias [31],
or well-funded DoS attacks, such as the Fomo3D attack that flooded the Ethereum network
with transactions for three minutes [20]. Such an approach can incentivize a consensus node
to intentionally produce an empty block by aiming to reveal the pending transactions for that
block. Therefore, we require a per-transaction rather than a per-block level of confidentiality,
thus ensuring that a transaction is never revealed before it is finalized on the blockchain.

4 System Overview

In this section, we present F3B’s system goals, architecture, and models.

4.1 System Goals
Our system goals, inspired by our strawman protocols, are

Front-Running Protection: prevents entities from practicing front-running.
Decentralization: mitigates a single point of failure or compromise.
Confidentiality: reveals a transaction, only after the underlying consensus layer finalizes
it.
Compatibility: remains agnostic to the underlying consensus algorithm and to smart
contract implementation.
Low-Latency: exhibits low-latency transaction-processing overhead.

4.2 Architecture Overview
F3B, shown in Figure 1, mitigates front-running attacks by working with a secret-management
committee to manage the storage and release of on-chain secrets. Instead of propagating
their transactions in cleartext, the sender can now encrypt their transactions and store the
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corresponding secret keys with the secret-management committee. Once the transaction
is finalized, the secret-management committee releases the secret keys so that consensus
nodes of the underlying blockchain can verify and execute transactions. Overall, the state
machine replication of the underlying blockchain is achieved in two steps: the first is about
the ordering of transactions, and the second is about the execution of transactions. As long
as most trustees in the secret-management committee are secure and honest and the key is
revealed to the public when appropriate, each consensus node can always maintain the same
blockchain state.

F3B encrypts the entire transaction3, such as the smart contract address, inputs, sender’s
signature, and other metadata, as those information can provide enough information to
launch a probabilistic front-running attack, such as the Fomo3D attack [20] or a speculative
attack based on the leakage of metadata [4].

4.3 System and Network Model
F3B’s architecture consists of three components: senders that publish (encrypted) trans-
actions, the secret-management committee (SMC) that manages and releases secrets, and
the consensus group that maintains the underlying blockchain. For the F3B based on the
PVSS scheme, the client can choose a different SMC for each transaction. For the F3B based
on the THD2 scheme, an SMC has a fixed membership over one epoch. When transiting
from one epoch to the next, the SMC can modify its membership under the THD2 scheme
with backward secrecy to prevent new trustees from decrypting old transactions without
interrupting users’ encryption by running a resharing protocol [62].

The secret-management committee and the consensus group can consist of the same set
of servers. For clarity in this paper, we logically separate them into two different entities.

For the underlying network, we assume that all honest blockchain nodes and trustees of
the SMC are well connected and that their communication channels are synchronous, i.e., if
an honest node or trustee broadcasts a message, then all honest nodes and trustees receive
the message within a known maximum delay [46].

4.4 Threat Model
We assume that the adversary is computationally bounded, that the cryptographic primitives
we use are secure, and in particular that the Diffie-Hellman problem and its decisional variant
are hard. We further assume that all messages are digitally signed and that the consensus
nodes and the SMC only process correctly signed messages.

The secret management committee consists of n trustees, where f can fail or behave
maliciously. We require n ≥ 2f + 1 and set the secret-recovery threshold to t = f + 1. We
assume that the underlying blockchain is secure: e.g., at most f ′ of 3f ′ + 1 validators can
fail or misbehave in a PBFT-style or PoS blockchain, or the adversary controls less than 50%
computational power in a PoW blockchain. We acknowledge that the security assumptions
for the secret management committee and the underlying blockchain might differ, potentially
reducing the overall system’s security to the least secure subsystem.

We assume that attackers do not launch speculative front-running attacks [4], but we
present a discussion on some mitigation strategies for reducing side-channel leakage in
Section 10.4.

3 Section 10.4 further discusses how to hide the sender’s address.
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Figure 2 F3B per-transaction protocol steps: (1) Send an encrypted transaction to the underlying
blockchain, (2) Prepare shares by trustees while waiting for transaction finality, (3) Reconstruct the
key, (4) Execute the transaction.

5 F3B Protocol

In this section, we introduce the F3B’s protocol, starting with some preliminaries, followed
by the F3B’s detailed design. The full paper [65] offers a more comprehensive protocol
description, and Section 10 introduces some optimizations.

5.1 Preliminaries
In this subsection, we introduce our preliminaries, including our baseline model for the
underlying blockchain and the cryptographic primitives used in F3B.

Blockchain Model

To compare F3B’s impact, we model the underlying blockchain to involve a consensus protocol
that finalizes transactions into a block that is linked to a previous block. We assume the
underlying block’s time as Lb seconds. In PoW and PoS-based blockchains, a transaction is
finalized only after a certain number of additional blocks have been added to the chain (also
known as block confirmations). Thus, we define that a transaction is finalized after m block
confirmations. Therefore, our baseline transaction latency is mLb.

Shamir’s Secret Sharing

A (t, n)-threshold secret sharing scheme enables a dealer to share a secret s among n trustees
such that any group of t ≤ n or more trustees can reconstruct s and no group less than t

trustees learns any information about s. Whereas a simple secret sharing scheme assumes an
honest dealer, verifiable secret sharing (VSS) enables the trustees to verify that the shares
they receive are valid [24]. Public verifiable secret sharing (PVSS) further improves VSS to
enable a third party to check all shares [53].

Distributed Key Generation (DKG)

DKG is a multi-party (t, n) key-generation process for collectively generating a private-public
key pair (sk, pk), without relying on a single trusted dealer; each trustee i obtains a share
ski of the secret key sk, and collectively obtains a public key pk [27]. Any client can now
use pk to encrypt a secret, and at least t trustees must cooperate to retrieve this secret [56].
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5.2 Protocol Outline

We present the outline of F3B protocols with two different threshold cryptographic schemes.
Figure 2 presents the protocol outline, and the full paper [65] offers a more comprehensive
protocol description.

5.2.1 Protocol based on TDH2

Setup

Before an epoch, the secret-management committee runs a DKG protocol to generate a
private key share ski

smc for each trustee and a collective public key pksmc written onto
the underlying blockchain. To offer chosen-ciphertext attack protection and to verify the
correctness of secret shares, we utilize the TDH2 cryptosystem [56] containing NIZK proofs.

Per-Transaction Protocol

1. Write Transaction: A sender first generates a symmetric key k and encrypts it with pksmc

from the underlying blockchain, thus obtaining the resulting ciphertext ck. Next, the
sender creates their signed transaction and symmetrically encrypts it by using k, denoted
as ctx = enck(tx). Finally, the sender sends (ctx, ck) to the consensus group who writes
the pair onto the blockchain.

2. Shares Preparation by Trustees: Once written, each secret-management committee trustee
reads ck from the sender’s transaction and prepares their decrypted share of k.

3. Key Reconstruction: When the sender’s transaction (ctx, ck) is finalized onto the underlying
blockchain (after m block confirmations), each secret-management committee trustee
releases their share to the consensus group. The consensus group verifies the decrypted
shares and uses them to reconstruct k by Lagrange interpolation of shares when there
are at least t valid shares.

4. Decryption and Execution: The consensus group finally symmetrically decrypts the
transaction tx = deck(ctx) using k, thus enabling it to execute tx.

Resharing Protocol

To modify a SMC’s membership and to offer backward secrecy over epochs, an SMC can
periodically run a verifiable resharing protocol [62] to replace certain trustees or redistribute
the trustees’ private keys. Unlike DKG, resharing keeps the epoch’s public key, thus preventing
undesirable interruptions of encryption services.

5.2.2 Protocol based on PVSS

Per-Transaction Protocol

0. Share Preparation By sender: For every transaction, the sender runs the PVSS protocol
[53] to generate an encrypted key share sharei for each trustee, as well as a corresponding
NIZK proof and public polynomial commitment. The proof and commitment can be used
to verify the correctness of key share and protect against chosen-ciphertext attacks. The
sender obtains the symmetric key k from the PVSS protocol.

AFT 2023
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m block confirmations Execution Time
Commitment Time

Time:

(a) Execution and finality time in Ethereum.

m block confirmations

Time:

(b) Execution and finality time in F3B.

Figure 3 In Ethereum, once they are inserted in the blockchain, the transactions are executed and
finalized after receiving m block confirmations. Whereas, in F3B, transactions are encrypted, and
their executions are postponed after receiving m block confirmations when the secret-management
committee releases the encryption keys. Both scenarios have a similar finality time.

1. Write Transaction: A sender first creates the ciphertext ck with the key shares, NIZK
proofs, and commitments generated during share preparation. Next, the sender creates
their transaction and symmetrically encrypts it by using the symmetric key k, denoted
as ctx = enck(tx). Finally, the sender sends (ctx, ck) to the consensus group who writes
the pair onto the blockchain.

2. Shares Preparation by Trustees: Same as (2) in 5.2.1.

3. Key Reconstruction: Same as (3) in 5.2.1.

4. Decryption and Execution: Same as (4) in 5.2.1.

5.3 Overhead Analysis

We analyze both protocols’ overheads. Write Transaction (step 1) is identical to sending a
transaction to the underlying blockchain. We assume trustees can finish Shares Preparation
by Trustees (step 2) within the confirmation time of the tx4. Hence, the time for steps 1
and 2 is equivalent to finalizing a transaction on the underlying blockchain and waiting until
its finality, which takes mLb time based on our baseline model (Section 5.1). As in PVSS
protocol, the sender can finish Share Preparation By sender (step 0) before having the tx;
thus step 0 does not contribute to the transaction latency. Comparing our protocol with the
baseline, Key Reconstruction (step 3) and Decryption and Execution (step 4) are additional
steps, and we denote the time of those steps to be Lr.

Figure 3 demonstrates the conceptual difference in finality and execution time between
F3B and the baseline. As the secret-management committee releases the secret keys with a
delay of m blocks, this introduces an execution delay of m blocks. However, in both cases,
to prevent attacks such as double-spending, the recipient should not accept a transaction,
until it is finalized. Therefore on a commercial level, F3B is similar to the baseline because
it exhibits the finality time of a transaction that is of use to the recipient5.

4 As we presented in Section 9, confirmation time in Ethereum is much longer than the share preparation
time by trustees.

5 In F3B, transaction finalization is slower due to the key reconstruction and delayed execution after
transaction finality. However, the overhead is negligible compared to finality time, as discussed in
Section 9.
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5.4 TDH2 and PVSS: Pros and Cons
When applying THD2 and PVSS to F3B, each scheme has some advantages and disadvantages.
This subsection offers qualitative comparisons, whereas Section 9 provides quantitative
comparisons between the two protocols.

Preprocessing: In TDH2, the secret-management committee needs to do DKG per
epoch, whereas in PVSS, the sender needs to prepare shares per transaction.
Membership: In TDH2, the secret-management committee’s membership is fixed per
epoch, whereas in PVSS, the sender can choose a different secret-management committee
for each transaction, providing the best flexibility.
Ciphertext: TDH2 has a constant ciphertext length, whereas PVSS’s ciphertext grows
linearly with the size of the secret-management committee.

In conclusion, no one protocol can completely replace another. System designers need to
choose one or both protocols based on their needs and constraints to mitigate front-running
attacks.

6 Achieving the System Goals

In this section, we present how F3B achieves the system goals outlined in Section 4.1.

Front-Running Protection: prevents entities from practicing front-running. We reason
the protection offered by F3B from the definition of front-running: if an adversary cannot
benefit from pending transactions, he cannot launch front-running attacks. In F3B, the
sole entity that knows the content of a pending transaction is the sender who is financially
incentivized to not release its contents. The content is revealed only when its transaction is
finalized; thus, by definition, the attacker has no means to launch a front-running attack.
However, we acknowledge that attackers can use side channels (e.g. metadata such as sender’s
address and transaction size) of the encrypted transaction to launch speculative front-running
attacks, as discussed in Section 4.4 and Section 10.4. We present a more comprehensive
security analysis discussion in Section 7.

Decentralization: mitigates a single point of failure or compromise. Due to the properties
of DKG [27], THD2 [56], and PVSS [53], the SMC can handle up to t − 1 malicious trustees
and up to n − t offline trustees.

Confidentiality: reveals a transaction, only after the underlying consensus layer finalizes it.
The sender encrypts each transaction with a newly generated symmetric key. The symmetric
key is (a) encrypted under the secret-management committee’s public key in TDH2-based
protocol, (b) embedded into the encrypted shares in PVSS-based protocol. In both protocols,
f + 1 trustees are required to retrieve the symmetric key. Per our threat model, only f

trustees can behave maliciously; this ensures that the symmetric key cannot be revealed. We
outline a more detailed security analysis in Section 7.

Compatibility: remains agnostic to the underlying consensus algorithm and to smart
contract implementation. F3B requires modifying the execution layer to enable encryp-
ted transactions. However, the consensus layer remains untouched, thus agnostic to the
underlying consensus algorithms. Furthermore, F3B does not require to modify smart con-
tract implementations, thus enabling existing smart contracts to benefit from front-running
protection automatically.
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Low-Latency: exhibits low-latency transaction-processing overhead. Similar to the
baseline model, F3B requires clients to write only one transaction onto the underlying
blockchain. This enables F3B to have a low-latency overhead compared to other front-
running protection design that require multiple transactions for the same security guarantees.
We present an evaluation of this latency overhead in Section 9.

7 Security Analysis

In this section, we introduce the security analysis of F3B’s protocol.

7.1 Front-Running Protection

From our threat model, we reason about why an attacker can no longer launch front-running
attacks with absolute certainty of a financial reward, even with the collaboration of at most
f malicious trustees. As we assume that the attacker does not launch speculative attacks
based on metadata of the encrypted transactions, the only way the attacker can front-run
transactions is by using the plaintext content of the transaction. As the attacker cannot
access the content of the transaction before it is finalized on the underlying blockchain,
then the attacker cannot benefit from the pending transaction. This prevents front-running
attacks (by the definition of front-running). As we assume that the symmetric encryption we
use is secure, the attacker cannot decrypt the transaction based on its ciphertext. Due to
the properties of TDH2 [56], DKG [27], and PVSS [53] with our threat model, the attacker
cannot obtain the private key and/or reconstruct the symmetric key. Recall that the attacker
can collude with at most only f trustees, and that f + 1 are required to recover or gain
information about the symmetric key.

7.2 Replay Attack

We consider a scenario in which an adversary can copy a pending (encrypted) transaction and
submit it as their own transaction to reveal the transaction’s contents, before the victim’s
transaction is finalized. By revealing the contents of the copied transaction, the attacker can
then trivially launch a front-running attack. However, we explain the reason the adversary is
unable to benefit from such a strategy.

In the first scenario, the adversary copies the ciphertext ck and the encrypted transaction
ctx from txw, then creates a new write transaction tx′

w, digitally signed with their signature.
However, even if the adversary’s tx′

w is decrypted and executed before the victim’s transaction
txw, it effectively results in the blockchain executing txw

6. This leaves the adversary with no
time to front-run their own tx′

w without knowing its contents.
In our second scenario, the adversary instead sends the transaction to a blockchain with

smaller m block confirmations. Consider two blockchains b1 and b2 whose required number
of confirmation blocks are m1 and m2 with m1 > m2. If the adversary changes the label
L to L′ for the blockchain b2 instead of blockchain b1, the secret-management committee
will successfully decrypt the transaction. However, we argue it is hard to form a valid
write-transaction with L′ by the adversary.

6 Note that tx is already a signed transaction; thus, txw and tx′
w have the same effect on the blockchain.
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For the TDH2 protocol, the adversary would need to generate e′ = H1 (c, u, ū, w, w̄, L′)
and f = s + re′, without knowing the random parameter r and s. Suppose the adversary
generates u = gr, ū = ḡr′ with r ̸= r′ and w = gs, w̄ = ḡs′ with s ̸= s′. For tx′

w to be valid,
we must have gf = wue and ḡf = w̄ūe, this implies that (s − s′) + e(r − r′) = 0. As r ̸= r′ ,
the adversary has only a negligible chance of having tx′

w pass verification.
For the PVSS protocol, the adversary must replace the original generator h with h′

derived from H(L′). Hence, the adversary has to do the proofs without secrets. The security
of PVSS guarantees that they only have a negligible probability of succeeding. Note that the
base point has to be random to ensure the security. Using Elligator maps [8] guarantees that
the generator h is random.

8 Incentive

F3B must incentivize actors to operate and follow the protocol honestly. In this section, we
address the critical incentives that, in F3B, prevent spamming transactions and that deter
collaboration among trustees from prematurely revealing transactions.

8.1 Spamming Protection

As the consensus group cannot execute encrypted transactions, an adversary could, at a low
cost, spam the blockchain with non-executable transactions (e.g., inadequate fees, malformed
transactions), thus delaying the finality of honest transactions. To make such an attack
costly, we introduce a storage deposit, alongside the traditional execution fee (e.g., gas
in Ethereum) and adjustable based on the transaction’s size. The underlying blockchain
can deduct the storage deposit from the sender’s balance, much like paying a transaction
fee. Then the blockchain can partially refund the deposit after successful execution by the
consensus nodes. This approach imposes a low-cost fee on compliant users and a penalty on
those who misbehave.

8.2 Operational Incentive

We need a similar incentive structure for the secret-management committees; similar to the
way consensus nodes are rewarded for following the blockchain protocol via an execution
fee. Whereas SMCs could be rewarded using the execution fee, this fee does not prevent
SMC trustees from colluding for their financial gain. For example, an SMC might silently
collude with a consensus group by prematurely giving them the decryption shares. Given
the difficulty of detecting out-of-band collusion, we need to discourage it from doing so by
significantly rewarding anyone who can prove the existence of such collusion.

We propose an incentive structure, where we require each trustee in a secret-manage-
ment committee to lock an amount c for collateral and, in exchange, they are rewarded
proportionally to the staked amount ac for the services they provide. Remind that, based on
our threat model (Section 4.4), t trustees must collude altogether to reconstruct a transaction.
To maintain security, the potential gain that t trustees benefit from front-running must
be less than the potential loss (1 + a)ct, which malicious trustees would incur through the
slashing protocol described in Section 8.3. Hence, a higher potential loss value (1 + a)ct

ensures security for a longer epoch length. If other factors stay consistent, designers can
support a longer epoch length by either increasing the collateral requirement (by raising c)
or by involving more trustees (by increasing t).
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Figure 4 The breakdown latency of each step
in F3B by varying the number of secret-manage-
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Figure 5 A comparison of the sender commit-
and-reveal approach latency with F3B against
a baseline modeled in Ethereum. The string
“F3B-X” represents X trustees.

8.3 Slashing Protocol
We need to have a protocol that rewards anyone who can prove a trustee’s or the entire secret-
management committee’s misbehavior to discourage the release of the shares prematurely.
At the same time, we do not want anyone to accuse a secret-management committee or a
specific trustee without repercussions if the SMC or trustee did not actually misbehave.

To accomplish our objective, each trustee of the secret-management committee must
stake some amount of cryptocurrency in a smart contract that handles disputes between a
defendant (the entire secret-management committee or a particular trustee) and a plaintiff.
To start a dispute, the plaintiff will invoke the smart contract with the correct decryption
share for a currently pending transaction and their own stake. Suppose the smart contract
validates that this is a correct decryption share and that the dispute started before the
transaction in question was revealed by the secret-management committee. In this case, the
defendant’s stake is forfeited and sent to the plaintiff.

At a protocol level, to prove a correct decryption share in protocol with TDH2, the
plaintiff submits [ui, ei, fi] such that ei = H2

(
ui, ûi, ĥi

)
where ûi = ufi

ui
ei

and ĥi = gfi

hi
ei

. In
the protocol based on PVSS, the plaintiff submits [si, πsi

], where πsi
is the NIZK proof that

shows logg pki = logsi
ŝi. Even if the sender knows si, it is impossible to maliciously slash a

trustee without the πsi
, which only the corresponding trustee knows.

Deploying such a mechanism would require the smart contract to access the ciphertext of
a transaction (e.g., u or ŝi is necessary to verify the submitted share).

9 Evaluation

We prototype F3B by using post-merge Ethereum [23] as the underlying blockchain and
Dela [19] written in Go [28] as the secret-management committee for our evaluation. Remain-
ing consistent with Ethereum’s security assumptions, one epoch length lasts 6.4 minutes and
the trustees forming the secret-management committee from validators for a given epoch are
randomly selected. We instantiate our cryptographic primitives by using the Edward25519
elliptic curve with 128-bit security supported by Kyber [37], an advanced cryptographic
library. We ran experiments on a server with 32GB of memory and 40 (2.1GHz) CPU cores.
The network communication delay is simulated to be a fixed 100ms. We further discuss F3B
integration with Ethereum in Section 10.
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Table 1 Latency Overhead for Ethereum
Blockchain.

Latency Overhead varying SMC sizes

TDH2 PVSS
Confirmations 64 128 64 128

8 0.164% 0.206% 0.160% 0.214%
16 0.082% 0.103% 0.080% 0.107%
32 0.041% 0.052% 0.040% 0.053%
64 0.020% 0.026% 0.020% 0.027%

128 0.010% 0.013% 0.010% 0.013%

Table 2 Storage overhead for two protocols
with different Secret-management Committee
sizes.

Storage Overhead (bytes)

Number of trustees TDH2 Protocol PVSS protocol

8 80 792
16 80 1568
32 80 3120
64 80 6224

128 80 12 432

9.1 Latency

In Figure 4, we present the breakdown latency of each step for both TDH2 and PVSS
protocols after a transaction finality while varying the number of SMC trustees from 8 to 128
nodes: (a) shares preparation by trustees, and (b) key reconstruction, and (c) decryption
and execution. In addition, we show the time needed for PVSS shares generation by the
sender in purple of Figure 4. As discussed in Section 5.3, only (b) and (c) represent the
overhead at the per-transaction level.

Recall that the overall transaction latency using F3B is mLb + Lr (Section 5.2). In
post-Merge Ethereum, the block time is fixed to 12 seconds, i.e., Lb = 12 [9], and, by
official standard, a block requires 64 block confirmations (two epochs) to be “finalized”, i.e.,
m = 64 [22].

Figure 5 presents the end-to-end latency comparison between the baseline protocol (Sec-
tion 5.1), a sender-only commit-and-reveal protocol, as presented in Strawman 1 (Section 3.1),
and F3B’s protocol – varying the size of the secret-management committee stated after
the string “F3B-”. With the new PoS consensus, finalizing any data in Ethereum requires
mLb = 64 ∗ 12 = 768 seconds. The baseline protocol’s total latency is 768 seconds, as it
requires only one write to the blockchain. Recall that in the sender-based commit-and-reveal
approach (Strawman I), the sender commits a hash to the blockchain, taking 768 seconds,
then reveals the transaction in another 768 seconds, totaling 1536 seconds. This results in a
100% latency overhead compared to the baseline, as the two steps must be sequential: the
hash must be finalized on the blockchain before the reveal transaction can be propagated.
Submarine, a more advanced approach that conceals the smart contract address, requires
three sequential transactions. The sender must publish these three transactions in order,
with the blockchain finalizing each one before the next one can be sent, suffering a latency
delay of 768 ∗ 3 = 2304 seconds or a 200% latency overhead compared to the baseline [39, 11].

Compared with F3B, the reveal phase (key-reconstruction step) does not require the
sender to write any data onto the blockchain. Therefore, we emphasize a significant difference
between F3B and other application-based commit-and-reveal approaches, where F3B requires
sending only one transaction to the underlying blockchain. Figure 5 shows that our design
brings a low-latency overhead of 197ms and 205ms for two protocols, equivalent to 0.026%
and 0.027% for Ethereum (relative to the 768 seconds finality time), under an SMC size of
128.

We acknowledge that some Ethereum users may accept a lower confirmation number to
accept a transaction, even though Ethereum officially requires 64 blocks [22]. Without loss of
generality, we outline different confirmation numbers with F3B’s latency overhead in Table 1.
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Figure 7 The latency cost of DKG setup and
three resharing scenarios.

9.2 Throughput
Figure 6 presents the F3B’s throughput results with a secret-management committee consist-
ing of 128 trustees, assuming the underlying blockchain is not the bottleneck. If the keys are
individually reconstructed, F3B provides limited throughput due to network transmission
overhead incurred from sequential execution. Instead, we can batch keys by reconstructing
them concurrently and presenting them in one network transmission. We present this batch-
ing effect in Figure 6 by varying the batching size to measure throughput and corresponding
latency. By increasing the batching size from 1 to 2048, we can improve throughput from
5 txns/sec to 359 txns/sec with the TDH2 protocol, and from 4 txns/sec to 348 txns/sec
with the PVSS protocol. The increased throughput comes with a higher latency cost: With
a batching size of 2048, the key reconstruction step of TDH2 now takes 5.71 seconds to
process, and the same step of PVSS takes 5.88 seconds; this latency is equivalent to a 0.74%
and 0.77% latency overhead over Ethereum. Our results show that F3B provides more than
sufficient throughput to support Ethereum (15 tx/sec [51]).

9.3 Reconfiguration in TDH2
Figure 7 demonstrates the cost of reconfiguring a secret-management committee in the TDH2
protocol. Recall that DKG is a one-time setup operation per epoch, bootstrapped during
the previous epoch. Our experiment shows that, with a committee size of 128 trustees, DKG
takes about 144 seconds; this is about 37.5% of Ethereum’s epoch time (384 seconds). We
offer a further discussion about the transition between two epochs in Section 10.1. To provide
backward secrecy and dynamic membership, a secret-management committee can run a
verifiable resharing protocol [62] within an epoch and, by keeping the public key, without
interrupting users’ encryption. Figure 7 illustrates the cost of three scenarios: (a) resharing
among the same committee, (b) replacing one trustee, and (c) replacing a quarter of trustees.
They all exhibit latency of the same magnitude.

9.4 Storage Overhead
In the TDH2 protocol, as the symmetric key is encrypted with the shared public key, the
size of ck is independent of the number of trustees. We also optimize the original TDH2
protocol to remove the label L from the ciphertext but only insert L in the computation
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and verification steps of each party (consensus group, secret-management committee, sender)
for protection against replay attacks (Section 7.2). Ultimately, we achieve 80 bytes per
transaction of the storage overhead presented in Table 2.

In the PVSS protocol, however, the ciphertext ck contains encrypted shares, NIZK proofs,
and polynomial commitments. The size of the ck thus approximately grows linearly with the
number of trustees, as demonstrated in Table 2. The difference in storage overhead is one of
the trade-offs when system designers need to consider using which encryption algorithm in
F3B, as discussed in Section 5.4.

10 Discussion

In this section, we discuss some deployment challenges. We leave a detailed analysis for
future work.

10.1 Transition of Epoch
Each epoch has its unique public epoch key for a user to encrypt his symmetric key used
for encrypting a transaction. However, users will have difficulty choosing the correct epoch
key when the time is close to the transition between two epochs. With Fairblock [43] and
Shutter [57, 58], undesirable transaction revealing occurs when a user chooses the wrong
public key. Whereas, if the transaction is not finalized, F3B never reveals any transaction,
regardless of the chosen key; thus offering confidentiality to all unfinalized transactions. We
also expect that such an epoch transition is infrequent, compared with a block transition,
thus it causes much less trouble to users. In F3B, if a user uses an old epoch key for his
encryption, he can safely try again to select the new epoch key. To mitigate the issue even
more, the expiring epoch committee can offer some grace period, thus allowing both old and
new epoch keys to be valid for a certain period. This significantly reduces the danger of a
user choosing an incorrect key.

10.2 Ethereum Gas Fees
Ethereum uses gas fees to cover the cost of executing a transaction and implements a
maximum gas limit per block. Incorporating F3B on Ethereum would then require (1)
that the gas limit of each transaction to be in cleartext, and (2) that the summation of all
transactions’ gas limit within a block does not exceed the block gas limit. This opens the
possibility for another type of spamming attack (Section 8.1), where an adversary submits
transactions with substantial gas limits, thus leaving little room for other transactions.

Recall that the actual gas used by transactions cannot be determined because the
sender encrypts its contents, and that accurately estimating the gas cost of a transaction is
particularly difficult due to the uncertainty of the global state when validators process the
transaction. One potential approach to mitigating this kind of attack would be to then burn
the remaining (unused) gas. However, this approach could be too strict in practice, hence we
can instead envision partial refunds: refunding the remaining gas up to a percentage.

10.3 Verifiable Key Propagation
Under our proposed protocol, every consensus node must fetch the shares and run the
Lagrange interpolation to reconstruct the key. Would it instead be possible for one of the
consensus nodes to reconstruct the symmetric key k from the secret shares and to propagate
it to other consensus nodes with a succinct proof?
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Therefore, we propose a solution that requires additional storage overhead in exchange
for faster verification: Instead of constructing their encrypted transaction as (ck, ctx), the
sender additionally adds a hash of the symmetric key hk = H(k) as the third entry, creating
the following signed write transaction: txw = [ck, ctx, hk]sigskA

.
During key reconstruction, after recovering or receiving k, consensus nodes need to verify

whether the hash of k is consistent with the one (hk) published on the ledger. If it is
consistent, a consensus node can continue to decrypt the transaction and propagate the key k

to others. If it is inconsistent, however, a consensus node must reconstruct the key from
decryption shares and publish the shares to the underlying blockchain to slash the sender
who provides a wrong hk.

10.4 Metadata Leakage

In our architecture, adversaries can only observe encrypted transactions until they are
finalized, thus preventing the revelation of transaction contents to launch front-running
attacks. Nevertheless, to launch speculative attacks, adversaries can rely on side channels
such as transaction metadata. Concretely, as the sender needs to pay the storage fee
(Section 8.1) for publishing an encrypted transaction to the underlying blockchain, this leaks
the sender’s address. Knowledge of the sender’s address can help in launching a front-running
attack because an adversary might be able, based on the sender’s history, to predict the
sender’s behavior. To prevent this second-order front-running attack, a sender can use
a different address to pay for the storage fee. The underlying blockchain can also offer
anonymous payment to users, such as Zerocash [49] or a mixing service [66], to further hide
the payment address. Another side-channel leakage is the size of the encrypted transaction or
the time the transaction is propagated. A possible remedy for mitigating metadata leakage
is PURBs [45].

10.5 Key Storage and Node Catchup

In our protocol, if a new node wants to join the consensus group, it cannot execute the
historical transactions to catch up, unless it obtains all decryption keys. The secret-manage-
ment committee or consensus group can store these keys independently from the blockchain,
but this requires them to maintain an additional immutable ledger. As consensus nodes
already maintain one immutable storage medium, namely the underlying blockchain, the
keys can be stored on this medium as metadata; and the blockchain rule can require storing
valid keys when producing blocks.

However, this optimization brings about a timing issue, i.e., When should the blockchain
require the consensus group to store keys in a block? From our protocol, the transaction
is finalized at block height n and revealed at block height n + m, thus making the earliest
block to write the key at block height n + m + 1. With respect to the latest block height to
write the key, there is much more flexibility and we need to consider the balance between
the delay tolerance for all consensus nodes to retrieve the key and the time that consensus
nodes must retain the key. Assuming that the key reconstruction step takes up to δ block
times, the key should be written in or before the block n + m + δ.

Although this setup would work well for a blockchain with fixed block time, care must
be taken for blockchains where block time is probabilistic as the key might not have been
replicated to all consensus nodes at block height n + m + δ, thus some artificial delay for
new blocks could be induced.
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11 Related Work

Namecoin is a decentralized name service and an early work on front-running protection
using a commit-and-reveal design [29]. In Namecoin, a user first broadcasts a salted hash of
their name and then, after finality, broadcasts the actual name. Our first strawman protocol
(Section 3.1) is based on Namecoin.

After Namecoin, Eskandari et al. [20] systematized front-running attacks on the block-
chain by presenting three types of front-running attacks: displacement, insertion, and
suppression. Daian et al. [15] also quantified front-running attacks from an economic point of
view, determining that front-running attacks can also pose a security risk to the underlying
consensus layer by incentivizing unnecessary forks driven by the maximal extractable value
(MEV).

Many previous works explore the idea of applying threshold cryptography on blockchain.
Virtual ASICs use threshold encryption to implement an all-or-nothing broadcast in the
blockchain layer [26]. Sikka [59], Ferveo (Anoma) [5], Schmid [52], Dahlia [40], and Helix [3]
apply threshold encryption to mitigate front-running but only present discussions with specific
consensus algorithms. Fairblock [43] and Shutter [57, 58] enable encrypted transactions on
a per-block basis, but if an encrypted transaction fails to be included in the sender-chosen
block, then the transaction would be revealed; our Strawman III design (Section 3.3) is based
on their approach.

Calypso is a framework that enables on-chain secrets by adopting threshold encryption
governed by a secret-management committee [33]. Calypso allows ciphertexts to be stored on
the blockchain and collectively decrypted by trustees according to a predefined policy. F3B
leverages Calypso to specifically mitigate front-running attacks and extends its functionality
to release the transaction contents once finalized automatically. F3B adopts per-transaction
encryption, thus protecting all unfinalized transactions from front-running attacks, even if
the transactions are delayed.

Other works adopt different approaches to mitigate front-running. A series of recent
studies focus on fair ordering [30, 35, 36], but they cannot prevent an adversary with a
rapid network connection [4]. Wendy explores the possibility of combining fair ordering
with commit-and-reveal [36] but is in need of quantitative overhead analysis. Submarine is
an application-layer front-running protection approach that extends a commit-and-reveal
design to prevent leakage of the smart contract address. However, it presents a high latency
overhead by requiring senders to have three rounds of communication with the underlying
blockchain [39, 11].

Some works adopt time-lock puzzles [48] to blind transactions. For example, the injective
protocol [12] uses a verifiable delay function [10] to achieve a proof-of-elapsed-time. However,
an open challenge remains to link the time-lock puzzle parameters to an actual real-world
delay [4].

Finally, works such as MEV-SGX [41], Tesseract [6], Secret Network [54], and Fairy [60]
use a trusted execution environment [64] to mitigate front-running. Nevertheless, these
approaches use a centralized component that is then subject to a single point of failure or
compromise [47, 61].

12 Conclusion

In this paper, we have introduced F3B, a novel blockchain architecture that addresses front-
running attacks with TDH2 and PVSS as threshold encryption protocols on a per-transaction
basis. Our evaluation of F3B demonstrates that F3B is agnostic to consensus algorithms
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and to existing smart-contract implementations. We have also shown that F3B meets the
necessary throughput while presenting a low-latency overhead, thus fitting with Ethereum.
Given that the deployment of F3B would require modifications to a blockchain’s execution
layer, F3B, in return, would also provide a substantial benefit: the F3B-deployed blockchain
would now, by default, contain standard front-running protection for all applications in need
at once without requiring any modifications to smart contracts themselves.
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