
ZeroAuction:
Zero-Deposit Sealed-bid Auction

via Delayed Execution

Haoqian Zhang, Michelle Yeo, Vero Estrada-Galinanes, Bryan Ford
Swiss Federal Institute of Technology Lausanne (EPFL) &

National University of Singapore (NUS)
Workshop on Trusted Smart Contracts - WTSC 2024

March 8, 2024

1

Outline

• Sealed-bid Auction
• Impossibilities
• ZeroAuction
• Experimental Results
• Conclusion

2

Open-bid Auction

3

Bidding

Alice
Bid: 10

Bob
Bid: 20

Charlie
Bid: 15

Winner:
Bob

Open-bid Auction

4

8 H. Zhang et al.

Algorithm 2: ZeroAuction smart contract with delayed execution

1 Init Upon creating the auction smart contract:
2 highest 0, winner ?
3
4 Bid Upon receiving i’s bid bi in the bidding period :
5 if bi > highest then
6 Assert(i transfers bi)
7 Distribute highest to winner when winner 6= ?;
8 highest bi
9 winner i

10 end

3.1 Pseudocode

Algorithm 2 describes the ZeroAuction smart contract. When the auctioneer
creates the smart contract, the consensus nodes run the Init function, which
initializes two valuables: highest, which indicates the value of the current highest
bid, and winner, which records the current winner of the auction. During the
biding period, each bidder can submit his bid by calling Bid function, which
encapsulates both commit and reveal phases. The function checks whether this
bid is more than the current highest. If so, the smart contract asks the bidder to
transfer the amount of his bid to itself, refunds the current winner, and finally
update the current highest and winner. If not, the bidder loses the auction.

3.2 Under the Delayed Execution Environment

ZeroAuction, as presented in Algorithm 2, implements an open auction, as none
of the bids are hidden. However, it becomes a sealed-bid auction when employed
in a delayed execution environment. Bidders submit their bids within the delay
time, so the delayed execution guarantees hiding the bids during the bidding
period and revealing them during the revealing period.

Requirements: We require the delay time in the delayed execution to be
the same as the confirmation time T of the underlying blockchain. Thus, when
the blockchain with delayed execution decrypts and executes the transaction, it
also finalizes the transaction without extra latency overhead. We also require the
bidding time in any sealed-bid auction to be  T . Observe that a bidding time
of more than T reveals the plaintext of encrypted bids submitted at the start of
the bidding period to other bidders before the bidding period is over. We further
demand that the blockchain delay executes all transactions by T time, including
non-auction transactions, such as transfer transactions. This requirement ensures
that no user can make quick transfers to another account during the auction to
affect the outcome of the auction, given information revealed about others’ bids
during the revealing period.

Non-malleability: To guarantee the non-malleability property of the auc-
tion, a bidder first encrypts their transaction using a symmetric non-malleable

Sealed-bid Auction

5

Alice
Bid:

Bob
Bid:

Charlie
Bid:

Bidding

Winner:
???

Commit-and-Reveal

6

Alice
commita

Bob
commitb

Charlie
commitc

Winner:
Bob

Alice
Bid: 10

Bob
Bid: 20

Charlie
Bid: 15

Bidding Revealing

Deposit

7

Alice
Commita
Deposit

Winner:
Bob

Alice
Bid: 10

Bob
Bid: 20

Charlie
Bid: 15

Bob
Commitb
Deposit

Charlie
Commitc
Deposit

Bidding Revealing

Sealed-bid Auction

8

4 H. Zhang et al.

Algorithm 1: Commit-and-reveal auction smart contract

1 Init Upon creating the auction smart contract:
2 Set d as required deposit for the auction
3 highest 0, winner ?, hash []

4
5 Bid Upon receiving i’s commitment ci first time in bidding period :
6 Assert(i transfers d)
7 hash[i] ci
8
9 Reveal Upon receiving i’s bid bi and salt ri first time in revealing period :

10 Assert(Hash(bi, ri) = hash[i])
11 Assert(bi  d)
12 if bi > highest then
13 Distribute highest to winner when winner 6= ?;
14 Distribute d� bi to i
15 highest bi
16 winner i

17 else
18 Distribute d to i;
19 end

– Revealing: All the sealed bids will be revealed during the revealing period.
– Non-malleability: No bidder can alter any encrypted bid from others into

another form such that the plaintext of the altered encrypted bid is related
to the original bid.

The non-malleability property ensures that simply observing one bidder’s
encrypted bid does not give another bidder an unfair advantage, for example, to
prevent a malicious bidder from altering an existing bid’s ciphertext to bid 1 coin
more than the value in the encrypted bid. Specifically, we consider the notion of
NM-CPA security commonly used in the context of sealed-bid auctions [7,21,6].
Intuitively, NM-CPA security states that the plaintext decryptions of encrypted
bids produced by an adversarial bidder must be indistinguishable.

To illustrate the benefit of delayed execution, we did not consider the poste-
rior privacy property, which hides the losing bids from the public. We note that
additional cryptographic tools like Zero-Knowledge Proofs (ZKP) or Multi-Party
Computation (MPC) are needed for sealed-bid auctions ensuring the posterior
privacy property [13,12,3].

2.2 Commit-and-Reveal Smart Contract for Sealed-bid Auction

Algorithm 1 illustrates implementing a commit-and-reveal smart contract simpli-
fied from real-world examples on the blockchain for a sealed-bid auction [5,17,18].
The smart contract contains two phases: (a) the bidding phase (Bid function),
where each bidder submits their hidden bid commitment. This implements the

Impossibility 1: One Round Communication

9

Alice
Bid?
Commit?

Winner:
???

Bob
Bid?
Commit?

Charlie
Bid?
Commit?

Bidding

Impossibility 2: Eliminating Deposit

10

Alice
Commita
Deposit

Winner:
Bob

Alice
Bid: 10

Bob
Bid: 20

Charlie
Bid: 15

Bob
Commitb
Deposit

Charlie
Commitc
Deposit

Bidding Revealing

Impossibility 3: Multiple Auctions

11

Winner:
Bob

Alice
Bid: 10

Bob
Bid: 20

Alice
Bid: 10

Winner:
Alice

Bidding Bidding

Balance Auction Auction

Alice 10 10 10

Bob 20 20

Impossibility 3: Multiple Auctions

12

Winner:
???

Winner:
???

Bidding Bidding

Alice
Bid:

Bob
Bid:

Alice
Bid:

Balance Auction Auction

Alice 10 10 10

Bob 20 20

13

Alice
txa

Bob
txb

Alice
txa

Bob
txb

Global Delay Time

Delayed Execution*

*Zhang, Haoqian, et al. "F3B: A low-overhead blockchain architecture with per-transaction front-running protection." 5th Conference on
Advances in Financial Technologies (AFT 2023)

Delayed Execution without Latency Overhead

: Executing

Tx

Tx

: Waiting

T block confirmation

T block delay

Commit Finalization

Tx
Tx

: Without Delayed Execution
: With Delayed Execution

14

ZeroAuction

15

Global Delay Time

Bidding

Alice
Bid: 10

Bob
Bid: 20

Alice
Bid: 10

Bob
Bid: 20

Revealing

Winner:
Bob

Open-bid Auction

16

8 H. Zhang et al.

Algorithm 2: ZeroAuction smart contract with delayed execution

1 Init Upon creating the auction smart contract:
2 highest 0, winner ?
3
4 Bid Upon receiving i’s bid bi in the bidding period :
5 if bi > highest then
6 Assert(i transfers bi)
7 Distribute highest to winner when winner 6= ?;
8 highest bi
9 winner i

10 end

3.1 Pseudocode

Algorithm 2 describes the ZeroAuction smart contract. When the auctioneer
creates the smart contract, the consensus nodes run the Init function, which
initializes two valuables: highest, which indicates the value of the current highest
bid, and winner, which records the current winner of the auction. During the
biding period, each bidder can submit his bid by calling Bid function, which
encapsulates both commit and reveal phases. The function checks whether this
bid is more than the current highest. If so, the smart contract asks the bidder to
transfer the amount of his bid to itself, refunds the current winner, and finally
update the current highest and winner. If not, the bidder loses the auction.

3.2 Under the Delayed Execution Environment

ZeroAuction, as presented in Algorithm 2, implements an open auction, as none
of the bids are hidden. However, it becomes a sealed-bid auction when employed
in a delayed execution environment. Bidders submit their bids within the delay
time, so the delayed execution guarantees hiding the bids during the bidding
period and revealing them during the revealing period.

Requirements: We require the delay time in the delayed execution to be
the same as the confirmation time T of the underlying blockchain. Thus, when
the blockchain with delayed execution decrypts and executes the transaction, it
also finalizes the transaction without extra latency overhead. We also require the
bidding time in any sealed-bid auction to be  T . Observe that a bidding time
of more than T reveals the plaintext of encrypted bids submitted at the start of
the bidding period to other bidders before the bidding period is over. We further
demand that the blockchain delay executes all transactions by T time, including
non-auction transactions, such as transfer transactions. This requirement ensures
that no user can make quick transfers to another account during the auction to
affect the outcome of the auction, given information revealed about others’ bids
during the revealing period.

Non-malleability: To guarantee the non-malleability property of the auc-
tion, a bidder first encrypts their transaction using a symmetric non-malleable

ZeroAuction

17

8 H. Zhang et al.

Algorithm 2: ZeroAuction smart contract with delayed execution

1 Init Upon creating the auction smart contract:
2 highest 0, winner ?
3
4 Bid Upon receiving i’s bid bi in the bidding period :
5 if bi > highest then
6 Assert(i transfers bi)
7 Distribute highest to winner when winner 6= ?;
8 highest bi
9 winner i

10 end

3.1 Pseudocode

Algorithm 2 describes the ZeroAuction smart contract. When the auctioneer
creates the smart contract, the consensus nodes run the Init function, which
initializes two valuables: highest, which indicates the value of the current highest
bid, and winner, which records the current winner of the auction. During the
biding period, each bidder can submit his bid by calling Bid function, which
encapsulates both commit and reveal phases. The function checks whether this
bid is more than the current highest. If so, the smart contract asks the bidder to
transfer the amount of his bid to itself, refunds the current winner, and finally
update the current highest and winner. If not, the bidder loses the auction.

3.2 Under the Delayed Execution Environment

ZeroAuction, as presented in Algorithm 2, implements an open auction, as none
of the bids are hidden. However, it becomes a sealed-bid auction when employed
in a delayed execution environment. Bidders submit their bids within the delay
time, so the delayed execution guarantees hiding the bids during the bidding
period and revealing them during the revealing period.

Requirements: We require the delay time in the delayed execution to be
the same as the confirmation time T of the underlying blockchain. Thus, when
the blockchain with delayed execution decrypts and executes the transaction, it
also finalizes the transaction without extra latency overhead. We also require the
bidding time in any sealed-bid auction to be  T . Observe that a bidding time
of more than T reveals the plaintext of encrypted bids submitted at the start of
the bidding period to other bidders before the bidding period is over. We further
demand that the blockchain delay executes all transactions by T time, including
non-auction transactions, such as transfer transactions. This requirement ensures
that no user can make quick transfers to another account during the auction to
affect the outcome of the auction, given information revealed about others’ bids
during the revealing period.

Non-malleability: To guarantee the non-malleability property of the auc-
tion, a bidder first encrypts their transaction using a symmetric non-malleable

Impossibility 1: One Round Communication

18

Global Delay Time

Bidding

Alice
Bid: 10

Bob
Bid: 20

Alice
Bid: 10

Bob
Bid: 20

Revealing

Winner:
Bob

Impossibility 2: Eliminating Deposit

19

Global Delay Time

Bidding

Alice
Bid: 10

Bob
Bid: 20

Alice
Bid: 10

Bob
Bid: 20

Revealing

Winner:
Bob

Balance Auction

Alice 10 10

Bob 20 20

Impossibility 2: Eliminating Deposit

20

Global Delay Time

Bidding

Alice
Bid: 10

Bob
Bid: 20

Alice
Bid: 10

Bob
Bid: 20

Revealing

Winner:
Alice

Balance Auction

Alice 10 10

Bob 0 20
Not Valid

Impossibility 3: Multiple Auctions

21

Bidding Bidding

Alice
Bid: 10

Alice
Bid: 10

Alice
Bid: 10

Bob
Bid: 20

Revealing

Bob
Bid: 20

Alice
Bid: 10

Revealing

Winner:
Bob

Winner:
Alice

Global Delay Time

Balance Auction Auction

Alice 10 10 10

Bob 20 20

Experimental Results

22
Under Delayed Execution

Conclusion

• ZeroAuction achieves
• One round of communication
• Zero deposit requirement
• Same fund for multiple auctions

• ZeroAuction requires
• Delayed execution for all transactions

23
Workshop Paper

Protocol

24

highest = 20
winner = bidder 2

highest = 10
winner = bidder 1

Bidder 1 Bidder 2 Consensus
Group

Commit Tx
Tx={Enc(bid=10,…)}

Commit Tx’
Tx’={Enc(bid=20,…)}

T Block
Delay

T Block
Delay

Decrypt & Execute
Tx

Return 10 coins

Prepare

Prepare

Determine Winner

highest = 0
winner = ∅

Bidding
Phase

Revealing
PhaseDecrypt & Execute

Tx’

